Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Reliability evaluation of simulation models for nearfield groundwater flow and radionuclide transport computation

*; *; *; *

JNC TJ8400 2000-005, 71 Pages, 2000/05

JNC-TJ8400-2000-005.pdf:4.0MB

In this research, simulations with some parameters which characterize ground water flow and the reliability evaluation for the expansion of the calculation method of groundwater flow were carried out by using the radionuclide transport computations in nearfield heterogeneous porous media. Concretely contents are follows: (1)With the series of calculation method for three-dimensional saturated/unsaturated groundwater flow and one-dimensional radionuclide transport, the computational analyses with the parameters used in JNC report in 2000 was carried out and the influence of the different input flux was evaluated. (2)The examination of the application for the different ways of inverse laplace transformation which is used in one-dimensional radionuclide transport analysis code "MATRICS" was carried out. (3)The examination of the application of multi-element "MATRICS" (m-MATRICS) for radionuclide transport computations in nearfield heterogeneous porous media was carried out. (4)The series of calculation methods from three-dimensional saturated/unsaturated ground water flow simulation code to one-dimensional radionuclide transport simulation code was integrated.

JAEA Reports

Reliability evaluation for radionuclide transport analysis code MATRICS

*; Ijiri, Yuji*; *; *

JNC TN8400 2000-021, 66 Pages, 2000/04

JNC-TN8400-2000-021.pdf:4.38MB

A reliability evaluation for radionuclide transport analysis code, MATRICS, used in radionuclide transport analysis in the natural barrier system PA in H12 report has been carried out. Sensitivity analysis to radionuclide transport parameter in MATRICS and analytical solution has been performed, and the results of each analysis have been compared. Additionally sensitivity analysis using Talbot Method, Crump method and Hosono method has been carried out, and the results of each inverse Laplace transform method has been compared. The conclusions obtained from the results of the evaluation are summarized as follows, (1)In case of the infinite matrix diffusion distance, an error among the results of each calculation is maximum about 0.4% in the range of Pe number from 1.0 to 100. And, an error among the results of each calculation is maximum about 5.5% in the range of transmissivity from 1.0$$times$$10$$^{-10}$$ to 1.0$$times$$10$$^{-5}$$(m$$^{2}$$/s). (2)In case of the finite matrix diffusion distance (0.03$$sim$$1.0(m)), an error among the results of each calculation is maximum about 0.7% in the range of Pe number from 1.0 to 100. And, an error among the results of each calculation is maximum about 2.4% in the range of transmissivity from 1.0$$times$$10$$^{-10}$$ to 1.0$$times$$10$$^{-5}$$(m$$^{2}$$/s). 3)By comparing Talbot method with other inverse Laplace transform method, Talbot method is confirmed to give similar results with other inverse Laplace transform method in the range of Pe number from 5.0$$times$$10$$^{-1}$$ to 2.0$$times$$10$$^{3}$$, and that of transmissivity below 1.0$$times$$10$$^{-7}$$(m$$^{2}$$/s). Therefore, it is concluded that the reliability of MATRICS are confirmed by conducting sensitivity analysis in the range of Pe number and transmissivity coefficient used in H12 report.

2 (Records 1-2 displayed on this page)
  • 1